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Abstract

Molecular sequence megaclassification is a technique for
automated protein sequence analysis and annotation. Imple-
mentation of the method has been limited by the need to
store and randomly access a database of all the sequence
pair similarities. More than 80,000 protein sequences are
now present in the public databases, and the pair similarity
data table for the full protein sequence database requires
over 1 gigabyte of storage. In this paper we present a com-
putationally efficient representation of groups based on a
graph theory approach where sequence clusters are
described by a minimal spanning tree of highest scoring
similarity pairs. This representation allows a classification
of N proteins to be stored in order(N) memory. The use of
this minimal spanning tree representation simplifies analy-
sis of groups, the description of group characteristics and
the manual correction of artifacts resulting from false hits.
The new tree representation also introduces new possibili-
ties for artifact generation in sequence classification. Meth-
ods for detecting and removing these artifacts are
discussed.

I ntroduction

Megaclassification of protein sequencesis a useful tool for
molecular sequence analysis (Hunter, Harris, and States,
1992; Harris, Hunter and States, 1992). Megaclassification
involves automatically dividing a large sequence database
into a collection of groups of related subsequences. These
classes describe the database well with few ambiguously
assigned sequence segments and clear distinctions between
sequence clusters. Each group of protein subsequences may
be associated with a particular function in the cell, and thus
the classification can be used to predict the possible func-
tion of anovel protein.

The implementation of massive classification is com-
putationally demanding. Although algorithmic speed is
important, the main practical limitation is space complex-
ity. We devel oped a massive classification algorithm, called
HHS (Hunter, Harris, States, 1992), that can be used to
classify very large sequence databases. HHS assembles
sequence groups by using a sequence-comparison tool
called BLAST (Altschul et a 1990), which generates pair-
wise similarity information for all pairs of sequencesin the
database. As the groups are assembled, the pair similarity
database must be available for random access. This pair
database requires over 500 megabytes of storage for the
current sequence collections and grows with the square of
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the number of sequences. To make massive classification a
feasible calculation, the pair information must reside in
RAM,; the five order of magnitude time penalty required to
access magnetic disks is prohibitively slow. These space
reguirements are the main impediment to work in this area,
so we sought to develop aternative algorithms for massive
classification with reduced memory requirements.

A second issue that arises in the practical use of the
HHS algorithm is its susceptibility to overaggregation due
to false positive similarity judgments. Our agorithm does
an approximate transitive closure on the similarity judg-
ments, and a single false positive is enough to merge two
unrelated groups of sequences. We take avariety of stepsin
the clustering algorithm to avoid this problem, including
the use of sequence filters that eliminate repetitive and low-
entropy sequences, such as XNU (States and Claverie,
1993) and seg (Wootton and Federhen, 1992). The use of
these filters dramatically reduces the number of high scor-
ing false positive alignments generated in the course of a
sequence database self-comparison. However, these filters
do not completely eliminate false positives. The problem is
compounded by the fact that false positives often occur in
sets. If ahigh scoring alignment is seen between two mem-
bers of biologically unrelated sequence classes, sequence
correlations within the classes often imply that many high
scoring alignments will be observed between closely
related members of the two classes. That means that
increasing the strictness of the similarity measure (e.g.,
increasing the number of similar sequences required for two
groups to be merged) does not solve the problem. Although
testing of the method on synthetic data shows that this prob-
lem occurs in fewer than 1% of groups (Hunter, Harris &
States, 1992), current databases produce many thousand
groups, and overaggregation does occur.

Because the number of overaggregated groups can be
expected to be relatively low (a few dozen out of thou-
sands), it is plausible to identify incorrectly merged groups
manually. However, this has proven to be a difficult task
because of the size and complexity of the individual
classes. The overaggregated groups are going to be the larg-
est ones, and these can include several thousand sequences
and millions of similarity pairs. We sought a method of rep-
resenting these large groups that would clarify the sequence
relationships within them and that would alow manual
reviewers to more readily identify and eliminate false posi-
tive hits and falsely merged sequence classes.



A third related problem is that of how to build atotal
order over the members of each group. In contrast with
many classification tasks, the classes or groups formed by
our program don't have obvious definitions. each group isa
set of protein subsequences that have been found to resem-
ble each other. The similarity relationships within groups
are often complex and are not guaranteed to be entirely self-
consistent. Each sequence in a given class resembles some
other sequence in the class; that is how they ended up
together, but this may not be sufficient to generate a com-
plete order of all the sequence segmentsin aclass. In partic-
ular, the process of hit assembly prior to clustering allows
the possihility of cyclic graph formation during the cluster-
ing phase of the HHS algorithm (Hunter, Harris, and States,
1992). If an unambiguous ordering could be generated, this
ordering could be used to align all sequences in a group
with each other, and we could fill in a consensus frequency
matrix that shows the frequency of each amino acid at each
position along the set of sequences. If desired, this could be
used to represent the class as a single consensus sequence
by taking the most common amino acid at each position.

To address these multiple issues, we have developed an
aternative classification algorithm which uses a minimal
spanning tree of similarity relationships to build sequence
classes. This approach dramatically reduces the random
access memory requirements needed to implement the clas-
sification. In addition, the minimal spanning tree provides a
more compact view of sequence relationships within a fam-
ily that is useful in identifying false hits and removing them
from the classification. Finally, it provides a method for
unambiguously ordering the sequence segments within a
group. In this paper we will describe the minimal spanning
tree classification algorithm in greater detail, we will com-
pare classifications generated by this approach with classi-
fications generated storing the full pair similarity set, we
will show how this representation can be used to facilitate
manual editing of classifications, and we will discuss clas-
sification artifacts which arise as aresult of using thisrepre-
sentation.

Protein Sequence M egaclassification

Although many protein families and functional domains are
known, many more have not yet been recognized, and there
are errors and disagreements over some of the existing defi-
nitions of families and domains. In previous work, we
reported on HHS, our agorithm for automatic clustering of
large protein sequence databases. Our algorithm was
applied to the largest collection of protein sequences that
we could assemble, totaling about 17,000,000 amino acids.
This classification resulted in the identification of more
than 10,000 groups of protein subsequences, including fam-
ilies, domains, and some artifacts.

In this section, we describe the framework we use for
classifying these databases, and introduce some of the diffi-
culties involved. Figure 1 shows a data flow representation
of the classification process.

Figure 1. Data flow in the HHS algorithm
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Binary similarity judgments are found using BLAST (Alts-
chul et al 1990) to search the molecular sequence database
against itself to generate a database of al similar sequence
segments. These are assembled into sequence similarity
pairs.

BLAST is a computationally efficient sequence simi-
larity search tool that produces alist of statistically signifi-
cant ungapped similarity segments for a pair of sequences,
called the query and the subject (Altschul et al 1990). We
used BLAST to search the molecular sequence database
againgt itself to generate alist of all similar sequence seg-
ments. Biologically occurring insertion and deletion muta-
tions may break a single region of similarity into severa
segments, each of which appears as a separate BLAST hit.
The HHS algorithm compensates for this hit fragmentation
by assembling together hits that belong to the same region
of similarity. Overall, the database search phase of the cal-
culation requires order(N%quencez) time, but the database of
similarities can be stored and updated incrementally.

Clustering Assembled Hits

After the assembly phase, the BLAST hits have been
reduced to a somewhat smaller number of assembled hits.
We now want to group these assembled hits into equiva-
lence classes, forming the transitive closure of the pairwise
similarity judgments. Hits that should be grouped together
may have “ragged ends,” and be of somewhat different
lengths.

Hits belong in the same group if they refer to the same
region of similarity. In order to be grouped together, two
hits should demonstrate significant overlap, but they need
not coincide exactly. The non-overlapping portions of the
hits are referred to as overhang.
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larity into an existing group. In large groups, much of this
similarity data is redundant; since all of the segmentsin a
group are, by definition, related to each other, the ways in
which they are related are also similar. The number of simi-
larity judgements that must be saved is proportional to the
square of the number of group members. Figure 3. shows
that for large groups, the pair similarity dataset can be very
large.

Figure3.

BLAST hits establish equality relations across pro-
teins; the query and subject portions of a hit are nonran-
domly similar. Constructing groups is a matter of building
the transitive closure of the similarity judgments provided
by BLAST. The ragged ends issue complicates the determi-
nation of whether two regions (within a protein) are in fact
the same, and, therefore, whether hits that include those two
regions should be placed in the same group. Building
equivalence classes is then a matter of determining when
two hits contain references to the same region. However,
there are several complications that make building the tran-
sitive closure difficult. BLAST searching is probabilistic
and therefore noisy. It can miss regions of similarity, and it
can fragment a single region of similarity into multiple hits.
Also, BLAST handles approximate matches in the content
of the sequences, but it requires exact registration for
matching, and its matches have fixed extent. We need to
build groups that have approximately matching extents, and
where the registration between regions of similarity is not
perfect.

HHS address these issues by storing all of the similar-
ity judgments about a sequence segment throughout the
clustering calculation. Each new similarity judgement is
tested against all of the previously saved similarities to see
if any of them are consistent with clustering this new simi-

Figure 4. Cumulative number of membersand similarity pair
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Figure 3. shows the distribution of the number of mem-
bers per group in classification of the NCBI non-redundant
sequence database (NRDB). The X-axis is on alogarithmic
scale. The vast majority of groups contain only afew mem-
bers, while a small number of groups have many members;
the largest group contains over 2 million hits.

A small number of very large clusters account for most
of the memory required to run the HHS algorithm. As Fig-
ure 4. demonstrates, these large groups are inefficient in
terms of storage required per sequence.

The figure shows that a few large groups include the
vast majority of similarity relationships, and the number of
similarity values in these groups is out of proportion to the
number of membersthey contain. This observation led usto
modify our clustering method to reduce this redundancy.
The modification also has salutary effects on the memory
reguired to cluster and the human comprehensibility of the
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results, and provides a mechanism to impose a total order
on the members of each group.

Computationally Efficient Class Representation: The
HHS/M ST Algorithm

It occurred to us that most of the similarity data saved for
large groups was redundant, and it was clear that the stor-
age of this excess data was limiting our ability to classify
increasingly larger sequence databases. Recall that HHS
works by approximate transitive closure: If a to-be-classi-
fied sequence is similar to a single member of a group, itis
added to that group; if it is similar to members of more than
one group, those groups are combined. HHS keeps track of
all the similarity relationships between sequence in a group
(by definition, there are no similarity relationships outside a
group). The hope was that we could reduce this storage
requirement by keeping only a subset of the similarity rela-
tionships within group, rather than all of them. The most
aggressive way to do thisisto keep only one similarity rela-
tionship for each member of a group.

If we take this aggressive approach, we can throw
away all but one of the similarity relationships between that
seguence and the other members of its group. Which simi-
larity relationship should be kept? The highest scoring sim-
ilarity pair for a sequence is an obvious candidate as the
relationship to store. There are several reasons for choosing
this pair. The sequence pair with the highest similarity
score is likely to have diverged least evolutionarily. Since
the information content of a sequence alignment declines
with evolutionary divergence (Dayhoff et al, 1978; Alts-
chul, 1990), the highest scoring pair is the most informa-
tive. Since the information content of the alignment is
greatest, the highest scoring pair is likely to give the most
accurate estimate for the endpoints of the aligned segments.
The highest scoring pair is the similarity pair least likely to
miss a region of similarity distal to an insertion or deletion
mutation. The number of insertion and deletion mutations
in an alignment correlates with the number of substitution
mutations; high scoring pairs are likely to have fewer of
each. If an insertion or deletion event has occurred in a
closely related sequence pair, the distal segments are most
likely to be recognizable for the most similar sequence pair.

To recognize a sequence segment as a member of a
particular group, the segment must demonstrate similarity
to a single member of the group. HHS stores al of the
sequence similarity relationships within every class, and
thus additional similarity relationships may modify the end-
points of the segment that is assigned to the sequence class.
In some cases a hew similarity relationship may be consis-
tent with some, but not all, of the similarity hitsalready in a
group. Testing a new hit against only a subset of the simi-
larity data might, therefore, alter the group to which a seg-
ment is assigned, but in practice such cases are rare. To test
how limiting the amount of similarity data stored might
affect classifications, we implemented a classification in
which only a single similarity relationship was retained for
each new sequence segment.

The memory requirements and computational com-
plexity of the classification algorithm can be analyzed by
graph theory. Sequence segments may be considered to be
nodes, and similarity relationships may be viewed as edges
with the length of an edge being inversely proportional to
the similarity score. A sequence class is then a connected
graph. Representing the class by storing only the single
highest scoring similarity relationship for each new
sequence is equivalent to replacing the class relationship
graph with a minimal spanning tree. This analogy is valid
as long as the reduction to minimal spanning tree represen-
tation does not alter the segment endpoints for the sequence
segments which are the nodes of the class. In practice, we
have found that this condition is usually met. We refer to
this algorithm as the minimal spanning tree variant of the
HHS agorithm or HHS/MST.

The computational complexity of sequence classifica-
tion is equivalent to the computational complexity of defin-
ing the minimal spanning trees in the forest of graphs
defined by the full set of edges. Thisis awell known prob-
lem which has been analyzed in detail. The forest of mini-
mal spanning trees can be generated by sorting the edges by
length (computational complexity order(Negge 109(Nedge)),
taking them in order and rejecting any edge which gener-
ates a cyclic graph. By marking the nodes of each tree, the
graph can be tested by cyclesin constant time for each addi-
tional edge. A new edge will be incorporated into the forest
at most once for each node. A new edge may merge two
previous trees, and remarking the nodes of the tree will
require time proportional to the number of members in
either of the two merged groups.

The storage requirements of the minimal spanning tree
algorithm are proportional to the number of nodes in the
forest. This contrasts with the HHS algorithm, in which the
full set of edgesis stored. Since the number of edgesis pro-
portional to the number of nodes squared, the use of amini-
mal spanning tree representation results in a dramatic
reduction in storage requirements.

Testingthe HHS/M ST Algorithm

There is a possible problem with this approach. Recall that
the extent of similar regions is used to determine whether a
new sequence belongs in an existing group. Suppose a
group contains aregion of sequence A. Suppose further that
sequence B has a region that is similar to part of sequence
A. Whether sequence B will be added to the group depends
on the extent of the overlap (and non-overlap) with A. If we
keep only one similarity pair for A, then the extent of A in
the group is the one associated with that similarity. If there
is a wide range of extents of similarities for sequence A,
and sequence B is at a different end of that distribution than
the hit that was saved for A, then it is possible that using the
HHS/MST method will cause B to fail to be added to the
group. This could also cause a pair of groups to fail to be
merged together.

We have reason to believe that thisis not likely to be
practically significant. The highest similarity score gener-



Figure5. Fully connected and minimal spanning tree representations of a group
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ally goes to the longest pair of sequences, so al of the
extents will tend to be at the long end of the distribution.
We also ran the two methods on the same dataset to com-
pare the differences in classification.

Table 1.
Category HHS HHSMST
families 139 140
mixed 11 10
domains 11 14
Total 161 164

Table 1. compares the results of classifications gener-
ated using the HHS and HHS/MST agorithms to classify
the sequencesin the Brookhaven Protein Data Bank (PDB).
For the vast majority of the classes, the members included
and the precise endpoints of the domains were exactly the
same in the two classifications. There were two exceptions
to this. One group that contained both whole protein hits
and subprotein hits in the HHS classification was atered in
the HHS/MST classification so that the domain hit was
eliminated from the group, and this group therefore became
a protein family class instead of a mixed domain/family
class. In addition, three domain groups were defined in the
HHS/MST classification that were not defined in the HHS
classification. These additional subgroups resulted from
cases where assembled alignments between distantly
related members of a group spanned less than the full extent
of the domain and were short enough that the endpoint
length cutoff used in the classification did not allow these
hits to be included in the domain. In these three cases, new
groups were created which represent these conserved cores
of sequence. These new groups are not simply artifacts of
the HHS/MST algorithm because they provide additional
information about regional sequence conservation within
the parent domains. In this sense, the HHS/M ST classifica

tion may actually be more informative than the full HHS
classification.

The use of aminimal spanning tree representation pro-
vides a useful tool for generating subgroup descriptions.
This is illustrated in Figure 5. This family contains both
L14 and L23 ribosomal proteins. Viewing all of the similar-
ity relationships within the group, it is difficult to distin-
guish between these two subgroups. When only the hits
making up the minimal spanning tree are shown, the tightly
clustered L23 subgroup is more apparent. In addition, the
phylogenetic relationships of the L14 members are also
more easily discerned.

The ability to generate subgroupsis also useful in mak-
ing functional and biological correlates. For example, the
tyrosine kinase domains which are found in transmembrane
receptors such as the insulin and epidermal growth factor
receptors form a distinct subtree in the kinase class. Simi-
larly, the trypsin and elastase subtrees of the serine pro-
teases correlate with substrate preferences.

Using the M ST for manual review of the classification

As described above, even when sequences are prefiltered to
remove low entropy regions, false positive similarities can
generate some overaggregated groups. Trying to manually
screen the HHS produced classes and manually repair
errors proved infeasible. The large size and complexity of
the groups in which false positive hits occurred make it dif-
ficult to eliminate them by manual editing. If one false hit
was present, there were often other false hits between pro-
teins closely related to those in theinitia false hit. Evenif a
false positive hit can be identified and eliminated, there is
no guarantee that all of the false hits have been removed.

In HHS/MST classifications, false hits can easily be
identified by searching the path which connected two bio-
logically unrelated proteins in an artifactually merged
group. Even for very large groups, only afew dozen edges
were typicaly found. This is illustrated in Table 2 which



Table 2. False positive hit identification in alarge group by link tracing

Segment span Protein
(133 to 341) MUSNCAMR precursor polypeptide >513435 0 NCA3_MOUSE
(57 t0 543) RATTAGL axonal glycoprotein
(502 to 610) RATNCAM 14 neural cell adhesion molecule
(1to 108) HUMNCAM neural cell adhesion molecule secreted isoform
(485 to 681) XELNCAMA cell adhesion molecule
(1to 235) HUMNCAMA N-CAM >1019770 1 A26883 Neural cell adhesion
(621 to 681) XELNCAM neural cell adhesion molecule precursor
(82to 951) HUMTITINC2 titin
(248 to 940) A40985 * Projectin - Fruit fly (Drosophila melanogaster) (fragment)
(2515 to 2738) HUMTITINCS titin
(251 to 606) RATMLCK skeletal muscle light chain kinase
(1to 368) A05120 Myosin light chain kinase, skeletal muscle
(263 to 608) RABMLCKA myosin light chain kinase >511296 0 KMLC_RA

shows the hits connecting an immunoglobulin-like neural
cell adhesion molecule (NCAM) to a protein kinase domain
The table lists a set of segments, each of which was linked
by a similarity hit to the segments above and below it in the
table. In this example, the hits, or edges, connecting an
NCAM to a kinase were traced in the cluster tree. Hitsto a
set of “titin” proteins were seen to link the NCAMs and the
kinases. Titins are large structural proteins (Labeit et al,
1992) containing severa regions of low entropy sequence,
and XNU was not successful in completely eliminating
associated false hits. By manually deleting the hit from
HUMTITINC3 to RATMLCK, the kinase domain family
was correctly dissociated from the titins and NCAMs.
Deleting the hit from XELNCAM to HUMTITINC2
removed the link from the cell adhesion molecules to the
titins. The minimal spanning tree representation guaranteed
that when a false positive hit was identified and eliminated
from the dataset, the falsely merged groups were divided. If
they were not, then a cycle would have been present in the
graph and the original class representation would not have
been aminimal spanning tree.

Finally, using HHS/MST makes it more difficult to
detect a certain kind of database artifact that we discovered
with HHS. Thisartifact arises as aresult of technical diffi-
culties in cDNA cloning: partia sequences for many pro-
teins were present in the database along with complete
seguences for the same proteins. The fragmented nature of
these sequences often was not annotated and occasionally
was unknown to the contributing author. For HHS classifi-
cations, these artifactual groups could be detected using
post-classification analysis. The manifestation of the arti-
fact was a pair of two nearly identical groups. In one group,
each protein had hits with many other proteins. This was
the correct group. In the corresponding artifactual group,
one protein (the fragment) had hits with all the other pro-
teins, but because the non-fragment proteins had longer

regions of similarity (which are in the true group), none of
these other proteins had hits of this size with anything but
the fragment. This artifact produced an easily distinguish-
able star topology in the connectivity graph of the group. In
addition, the members of an artifact group, other than the
fragment, were all members of a corresponding true family
group. Inthe HHS/MST classifications, automated recogni-
tion of these fragment artifacts has proven more difficult
because much of the redundancy information used to dis-
criminate between the true and artifactual group has been
eliminated.

One of our goalsin the use of a minimal spanning tree
representation was a significant reduction in the storage
requirements for the classification calculation. This was
achieved. While classifications of the full NRDB using the
HHS algorithm required in excess of 500 MB of RAM
memory and required the use of a supercomputer with 512
MB of main memory, classifications using the minimal
spanning tree representation could be performed in 60 MB
of RAM and can be run easily on available workstations.

Discussion

Scalability of algorithms (Schank, 1991) and the ability to
work in large and complex data sets (Almuallim and Diet-
terich, 1991) are critical issues in machine learning. One of
our expressed goals in the sequence megaclassification
project has been the application of machine learning and
pattern induction techniques to large real world problems.
The HHS algorithm was successful in attacking real world
problems on datasets of interest to the biological commu-
nity (Hunter, Harris, and States, 1992), but given the rapid
growth in biological sequence data, even the quadratic scal-
ing of memory requirements with dataset size in HHS has
proven to be a significant limitation. In addition, some
cases of real biological interest have proven to be impossi-
ble to analyze on available computing resources. In particu-



lar, although we have been able to classify the current
protein sequence databases, much larger databases of
nucleic acid sequence are also available; analysis of these
datasets using HHS would require several gigabytes of
RAM. Much of the progress in computational molecular
seguence analysis has resulted from algorithms develop-
ment. We sought and were successful in deriving an algo-
rithmic solution to the limitation of the HHS approach. The
use of the HHS/MST approach will alow nucleic acid
seguence datasets and datasets containing both protein and
protein coding nucleic acid sequences to be analyzed
jointly.

The ability to work with combined protein and nucleic
acid sequence databases is of particular importance in deal-
ing with the classification artifacts created by the presence
of fragmentary sequences in the database. It may be possi-
ble to recognize partial mMRNA sequences, but there is no
definitive way to recognize partial sequences by protein
sequence classification alone. For example, the relationship
of the src kinase domain to the kinase domain of theinsulin
receptor is entirely analogous to the relationship of a partial
protein to its full parental sequence, but the proteins in the
src/insulin receptor examples are full length sequences and
the true relationship is an example of composite protein
structure. Messenger RNAs (mRNAS) typically contain a
number of distinctive features at their 5’ end including ribo-
some binding sites and initiator codons. If these are absent,
it islikely that the mRNA is a partial sequence. By jointly
classifying protein and nucleic acid coding regions, such
partial sequences can be recognized by criteria which are
independent of the classification.

The reduced storage requirements of the HHS/MST
algorithm will also be important in keeping pace with the
rapidly expanding databases of molecular sequence.
Sequence databases have been doubling in size every two
years. While computing speed has been able to match this
rate of growth to date, the corresponding pair similarity
datasets quadruple every two years. The cost of RAM has
fallen dramatically in recent years, but it has not fallen fast
enough to accommodate the projected space requirements
of aquadratic scaling calculation.

Improved ability to manually review and edit groupsis
an interesting benefit of the HHS/MST representation. In a
sense, the requirement of a more compact representation
forces a higher level view of the problem. Using the mini-
mal spanning tree representation made it easier to find false
positive hits and to manually edit and correct classifica-
tions.

The higher level view of the classification generated by
HHS/MST aso elucidates important relationships between
seguences within a group. As the L14/L 23 ribosomal pro-
tein example illustrated, there may be significant substruc-
ture within a group. Reducing group representation to a
minima number of strong similarity relationships high-
lights this extralevel of structure.

Calculation of consensus sequences or sequence pro-
file descriptions for groups is also facilitated by the span-

ning tree description of groups. When the full segmental
pair similarity list is used, ambiguous ordering or alignment
relationships were often generated by cycles in the similar-
ity graph describing a group. Since the tree representation
contains no cycles, these ambiguities are eliminated. Fur-
thermore, the use of the spanning trees based on the highest
scoring similarities optimizes the likelihood that the order-
ing and alignments defined for the group will be correct.

The tree representation implicit in the HHS/M ST prob-
lem maps closely to the hierarchic organization of protein
domains generated by the evolutionary process of gene
duplication and mutation (Patterson, 1988; Felsenstein,
1988; Dodlittle, 1992). The HHS/IMST algorithm does not
retain any notion of a parent-sibling relationship, and all of
the nodes in the HHS/MST tree are currently extant pro-
teins. Nevertheless, there is some similarity between the
highest scoring links selected by HHS/M ST and a true evo-
Iutionary tree. Homologs of closely related species are typi-
cally found near each other in HHS/MST trees, and the
longer branches of HHS/MST trees frequently correspond
with ancient divergence events between orthologous pro-
teins. The HHS/IMST classification agorithm may be a
valuable tool in the exploration of the relationship between
protein sequence, structure, and function.
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Abstract

Molecular sequence megaclassification is a technique for
automated protein sequence analysis and annotation. Imple-
mentation of the method has been limited by the need to
store and randomly access a database of all the sequence
pair similarities. More than 80,000 protein sequences are
now present in the public databases, and the pair similarity
data table for the full protein sequence database requires
over 1 gigabyte of storage. In this paper we present a com-
putationally efficient representation of groups based on a
graph theory approach where sequence clusters are
described by a minimal spanning tree of highest scoring
similarity pairs. This representation allows a classification
of N proteins to be stored in order(N) memory. The use of
this minimal spanning tree representation simplifies analy-
sis of groups, the description of group characteristics and
the manual correction of artifacts resulting from false hits.
The new tree representation also introduces new possibili-
ties for artifact generation in sequence classification. Meth-
ods for detecting and removing these artifacts are
discussed.

I ntroduction

Megaclassification of protein sequencesis a useful tool for
molecular sequence analysis (Hunter, Harris, and States,
1992; Harris, Hunter and States, 1992). Megaclassification
involves automatically dividing a large sequence database
into a collection of groups of related subsequences. These
classes describe the database well with few ambiguously
assigned sequence segments and clear distinctions between
sequence clusters. Each group of protein subsequences may
be associated with a particular function in the cell, and thus
the classification can be used to predict the possible func-
tion of anovel protein.

The implementation of massive classification is com-
putationally demanding. Although algorithmic speed is
important, the main practical limitation is space complex-
ity. We devel oped a massive classification algorithm, called
HHS (Hunter, Harris, States, 1992), that can be used to
classify very large sequence databases. HHS assembles
sequence groups by using a sequence-comparison tool
called BLAST (Altschul et a 1990), which generates pair-
wise similarity information for all pairs of sequencesin the
database. As the groups are assembled, the pair similarity
database must be available for random access. This pair
database requires over 500 megabytes of storage for the
current sequence collections and grows with the square of
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the number of sequences. To make massive classification a
feasible calculation, the pair information must reside in
RAM,; the five order of magnitude time penalty required to
access magnetic disks is prohibitively slow. These space
reguirements are the main impediment to work in this area,
so we sought to develop aternative algorithms for massive
classification with reduced memory requirements.

A second issue that arises in the practical use of the
HHS algorithm is its susceptibility to overaggregation due
to false positive similarity judgments. Our agorithm does
an approximate transitive closure on the similarity judg-
ments, and a single false positive is enough to merge two
unrelated groups of sequences. We take avariety of stepsin
the clustering algorithm to avoid this problem, including
the use of sequence filters that eliminate repetitive and low-
entropy sequences, such as XNU (States and Claverie,
1993) and seg (Wootton and Federhen, 1992). The use of
these filters dramatically reduces the number of high scor-
ing false positive alignments generated in the course of a
sequence database self-comparison. However, these filters
do not completely eliminate false positives. The problem is
compounded by the fact that false positives often occur in
sets. If ahigh scoring alignment is seen between two mem-
bers of biologically unrelated sequence classes, sequence
correlations within the classes often imply that many high
scoring alignments will be observed between closely
related members of the two classes. That means that
increasing the strictness of the similarity measure (e.g.,
increasing the number of similar sequences required for two
groups to be merged) does not solve the problem. Although
testing of the method on synthetic data shows that this prob-
lem occurs in fewer than 1% of groups (Hunter, Harris &
States, 1992), current databases produce many thousand
groups, and overaggregation does occur.

Because the number of overaggregated groups can be
expected to be relatively low (a few dozen out of thou-
sands), it is plausible to identify incorrectly merged groups
manually. However, this has proven to be a difficult task
because of the size and complexity of the individual
classes. The overaggregated groups are going to be the larg-
est ones, and these can include several thousand sequences
and millions of similarity pairs. We sought a method of rep-
resenting these large groups that would clarify the sequence
relationships within them and that would alow manual
reviewers to more readily identify and eliminate false posi-
tive hits and falsely merged sequence classes.



A third related problem is that of how to build atotal
order over the members of each group. In contrast with
many classification tasks, the classes or groups formed by
our program don't have obvious definitions. each group isa
set of protein subsequences that have been found to resem-
ble each other. The similarity relationships within groups
are often complex and are not guaranteed to be entirely self-
consistent. Each sequence in a given class resembles some
other sequence in the class; that is how they ended up
together, but this may not be sufficient to generate a com-
plete order of all the sequence segmentsin aclass. In partic-
ular, the process of hit assembly prior to clustering allows
the possihility of cyclic graph formation during the cluster-
ing phase of the HHS algorithm (Hunter, Harris, and States,
1992). If an unambiguous ordering could be generated, this
ordering could be used to align all sequences in a group
with each other, and we could fill in a consensus frequency
matrix that shows the frequency of each amino acid at each
position along the set of sequences. If desired, this could be
used to represent the class as a single consensus sequence
by taking the most common amino acid at each position.

To address these multiple issues, we have developed an
aternative classification algorithm which uses a minimal
spanning tree of similarity relationships to build sequence
classes. This approach dramatically reduces the random
access memory requirements needed to implement the clas-
sification. In addition, the minimal spanning tree provides a
more compact view of sequence relationships within a fam-
ily that is useful in identifying false hits and removing them
from the classification. Finally, it provides a method for
unambiguously ordering the sequence segments within a
group. In this paper we will describe the minimal spanning
tree classification algorithm in greater detail, we will com-
pare classifications generated by this approach with classi-
fications generated storing the full pair similarity set, we
will show how this representation can be used to facilitate
manual editing of classifications, and we will discuss clas-
sification artifacts which arise as aresult of using thisrepre-
sentation.

Protein Sequence M egaclassification

Although many protein families and functional domains are
known, many more have not yet been recognized, and there
are errors and disagreements over some of the existing defi-
nitions of families and domains. In previous work, we
reported on HHS, our agorithm for automatic clustering of
large protein sequence databases. Our algorithm was
applied to the largest collection of protein sequences that
we could assemble, totaling about 17,000,000 amino acids.
This classification resulted in the identification of more
than 10,000 groups of protein subsequences, including fam-
ilies, domains, and some artifacts.

In this section, we describe the framework we use for
classifying these databases, and introduce some of the diffi-
culties involved. Figure 1 shows a data flow representation
of the classification process.

Figure 1. Data flow in the HHS algorithm
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Binary similarity judgments are found using BLAST (Alts-
chul et al 1990) to search the molecular sequence database
against itself to generate a database of al similar sequence
segments. These are assembled into sequence similarity
pairs.

BLAST is a computationally efficient sequence simi-
larity search tool that produces alist of statistically signifi-
cant ungapped similarity segments for a pair of sequences,
called the query and the subject (Altschul et al 1990). We
used BLAST to search the molecular sequence database
againgt itself to generate alist of all similar sequence seg-
ments. Biologically occurring insertion and deletion muta-
tions may break a single region of similarity into severa
segments, each of which appears as a separate BLAST hit.
The HHS algorithm compensates for this hit fragmentation
by assembling together hits that belong to the same region
of similarity. Overall, the database search phase of the cal-
culation requires order(N%quencez) time, but the database of
similarities can be stored and updated incrementally.

Clustering Assembled Hits

After the assembly phase, the BLAST hits have been
reduced to a somewhat smaller number of assembled hits.
We now want to group these assembled hits into equiva-
lence classes, forming the transitive closure of the pairwise
similarity judgments. Hits that should be grouped together
may have “ragged ends,” and be of somewhat different
lengths.

Hits belong in the same group if they refer to the same
region of similarity. In order to be grouped together, two
hits should demonstrate significant overlap, but they need
not coincide exactly. The non-overlapping portions of the
hits are referred to as overhang.
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larity into an existing group. In large groups, much of this
similarity data is redundant; since all of the segmentsin a
group are, by definition, related to each other, the ways in
which they are related are also similar. The number of simi-
larity judgements that must be saved is proportional to the
square of the number of group members. Figure 3. shows
that for large groups, the pair similarity dataset can be very
large.

Figure3.

BLAST hits establish equality relations across pro-
teins; the query and subject portions of a hit are nonran-
domly similar. Constructing groups is a matter of building
the transitive closure of the similarity judgments provided
by BLAST. The ragged ends issue complicates the determi-
nation of whether two regions (within a protein) are in fact
the same, and, therefore, whether hits that include those two
regions should be placed in the same group. Building
equivalence classes is then a matter of determining when
two hits contain references to the same region. However,
there are several complications that make building the tran-
sitive closure difficult. BLAST searching is probabilistic
and therefore noisy. It can miss regions of similarity, and it
can fragment a single region of similarity into multiple hits.
Also, BLAST handles approximate matches in the content
of the sequences, but it requires exact registration for
matching, and its matches have fixed extent. We need to
build groups that have approximately matching extents, and
where the registration between regions of similarity is not
perfect.

HHS address these issues by storing all of the similar-
ity judgments about a sequence segment throughout the
clustering calculation. Each new similarity judgement is
tested against all of the previously saved similarities to see
if any of them are consistent with clustering this new simi-

Figure 4. Cumulative number of membersand similarity pair
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Figure 3. shows the distribution of the number of mem-
bers per group in classification of the NCBI non-redundant
sequence database (NRDB). The X-axis is on alogarithmic
scale. The vast majority of groups contain only afew mem-
bers, while a small number of groups have many members;
the largest group contains over 2 million hits.

A small number of very large clusters account for most
of the memory required to run the HHS algorithm. As Fig-
ure 4. demonstrates, these large groups are inefficient in
terms of storage required per sequence.

The figure shows that a few large groups include the
vast majority of similarity relationships, and the number of
similarity values in these groups is out of proportion to the
number of membersthey contain. This observation led usto
modify our clustering method to reduce this redundancy.
The modification also has salutary effects on the memory
reguired to cluster and the human comprehensibility of the

100000

members
80000

60000

40000

20000

cumulative number of hits

0

0 2000 4000 6000 8000 1000012000
group index

6+*10°
5100
4100
3¢10°
24100
106 J
0
0 2000 4000 6000 8000 1000012000
group index

similarity pairs

cumulative number of hits




results, and provides a mechanism to impose a total order
on the members of each group.

Computationally Efficient Class Representation: The
HHS/M ST Algorithm

It occurred to us that most of the similarity data saved for
large groups was redundant, and it was clear that the stor-
age of this excess data was limiting our ability to classify
increasingly larger sequence databases. Recall that HHS
works by approximate transitive closure: If a to-be-classi-
fied sequence is similar to a single member of a group, itis
added to that group; if it is similar to members of more than
one group, those groups are combined. HHS keeps track of
all the similarity relationships between sequence in a group
(by definition, there are no similarity relationships outside a
group). The hope was that we could reduce this storage
requirement by keeping only a subset of the similarity rela-
tionships within group, rather than all of them. The most
aggressive way to do thisisto keep only one similarity rela-
tionship for each member of a group.

If we take this aggressive approach, we can throw
away all but one of the similarity relationships between that
seguence and the other members of its group. Which simi-
larity relationship should be kept? The highest scoring sim-
ilarity pair for a sequence is an obvious candidate as the
relationship to store. There are several reasons for choosing
this pair. The sequence pair with the highest similarity
score is likely to have diverged least evolutionarily. Since
the information content of a sequence alignment declines
with evolutionary divergence (Dayhoff et al, 1978; Alts-
chul, 1990), the highest scoring pair is the most informa-
tive. Since the information content of the alignment is
greatest, the highest scoring pair is likely to give the most
accurate estimate for the endpoints of the aligned segments.
The highest scoring pair is the similarity pair least likely to
miss a region of similarity distal to an insertion or deletion
mutation. The number of insertion and deletion mutations
in an alignment correlates with the number of substitution
mutations; high scoring pairs are likely to have fewer of
each. If an insertion or deletion event has occurred in a
closely related sequence pair, the distal segments are most
likely to be recognizable for the most similar sequence pair.

To recognize a sequence segment as a member of a
particular group, the segment must demonstrate similarity
to a single member of the group. HHS stores al of the
sequence similarity relationships within every class, and
thus additional similarity relationships may modify the end-
points of the segment that is assigned to the sequence class.
In some cases a hew similarity relationship may be consis-
tent with some, but not all, of the similarity hitsalready in a
group. Testing a new hit against only a subset of the simi-
larity data might, therefore, alter the group to which a seg-
ment is assigned, but in practice such cases are rare. To test
how limiting the amount of similarity data stored might
affect classifications, we implemented a classification in
which only a single similarity relationship was retained for
each new sequence segment.

The memory requirements and computational com-
plexity of the classification algorithm can be analyzed by
graph theory. Sequence segments may be considered to be
nodes, and similarity relationships may be viewed as edges
with the length of an edge being inversely proportional to
the similarity score. A sequence class is then a connected
graph. Representing the class by storing only the single
highest scoring similarity relationship for each new
sequence is equivalent to replacing the class relationship
graph with a minimal spanning tree. This analogy is valid
as long as the reduction to minimal spanning tree represen-
tation does not alter the segment endpoints for the sequence
segments which are the nodes of the class. In practice, we
have found that this condition is usually met. We refer to
this algorithm as the minimal spanning tree variant of the
HHS agorithm or HHS/MST.

The computational complexity of sequence classifica-
tion is equivalent to the computational complexity of defin-
ing the minimal spanning trees in the forest of graphs
defined by the full set of edges. Thisis awell known prob-
lem which has been analyzed in detail. The forest of mini-
mal spanning trees can be generated by sorting the edges by
length (computational complexity order(Negge 109(Nedge)),
taking them in order and rejecting any edge which gener-
ates a cyclic graph. By marking the nodes of each tree, the
graph can be tested by cyclesin constant time for each addi-
tional edge. A new edge will be incorporated into the forest
at most once for each node. A new edge may merge two
previous trees, and remarking the nodes of the tree will
require time proportional to the number of members in
either of the two merged groups.

The storage requirements of the minimal spanning tree
algorithm are proportional to the number of nodes in the
forest. This contrasts with the HHS algorithm, in which the
full set of edgesis stored. Since the number of edgesis pro-
portional to the number of nodes squared, the use of amini-
mal spanning tree representation results in a dramatic
reduction in storage requirements.

Testingthe HHS/M ST Algorithm

There is a possible problem with this approach. Recall that
the extent of similar regions is used to determine whether a
new sequence belongs in an existing group. Suppose a
group contains aregion of sequence A. Suppose further that
sequence B has a region that is similar to part of sequence
A. Whether sequence B will be added to the group depends
on the extent of the overlap (and non-overlap) with A. If we
keep only one similarity pair for A, then the extent of A in
the group is the one associated with that similarity. If there
is a wide range of extents of similarities for sequence A,
and sequence B is at a different end of that distribution than
the hit that was saved for A, then it is possible that using the
HHS/MST method will cause B to fail to be added to the
group. This could also cause a pair of groups to fail to be
merged together.

We have reason to believe that thisis not likely to be
practically significant. The highest similarity score gener-
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ally goes to the longest pair of sequences, so al of the
extents will tend to be at the long end of the distribution.
We also ran the two methods on the same dataset to com-
pare the differences in classification.

Table 1.
Category HHS HHSMST
families 139 140
mixed 11 10
domains 11 14
Total 161 164

Table 1. compares the results of classifications gener-
ated using the HHS and HHS/MST agorithms to classify
the sequencesin the Brookhaven Protein Data Bank (PDB).
For the vast majority of the classes, the members included
and the precise endpoints of the domains were exactly the
same in the two classifications. There were two exceptions
to this. One group that contained both whole protein hits
and subprotein hits in the HHS classification was atered in
the HHS/MST classification so that the domain hit was
eliminated from the group, and this group therefore became
a protein family class instead of a mixed domain/family
class. In addition, three domain groups were defined in the
HHS/MST classification that were not defined in the HHS
classification. These additional subgroups resulted from
cases where assembled alignments between distantly
related members of a group spanned less than the full extent
of the domain and were short enough that the endpoint
length cutoff used in the classification did not allow these
hits to be included in the domain. In these three cases, new
groups were created which represent these conserved cores
of sequence. These new groups are not simply artifacts of
the HHS/MST algorithm because they provide additional
information about regional sequence conservation within
the parent domains. In this sense, the HHS/M ST classifica

tion may actually be more informative than the full HHS
classification.

The use of aminimal spanning tree representation pro-
vides a useful tool for generating subgroup descriptions.
This is illustrated in Figure 5. This family contains both
L14 and L23 ribosomal proteins. Viewing all of the similar-
ity relationships within the group, it is difficult to distin-
guish between these two subgroups. When only the hits
making up the minimal spanning tree are shown, the tightly
clustered L23 subgroup is more apparent. In addition, the
phylogenetic relationships of the L14 members are also
more easily discerned.

The ability to generate subgroupsis also useful in mak-
ing functional and biological correlates. For example, the
tyrosine kinase domains which are found in transmembrane
receptors such as the insulin and epidermal growth factor
receptors form a distinct subtree in the kinase class. Simi-
larly, the trypsin and elastase subtrees of the serine pro-
teases correlate with substrate preferences.

Using the M ST for manual review of the classification

As described above, even when sequences are prefiltered to
remove low entropy regions, false positive similarities can
generate some overaggregated groups. Trying to manually
screen the HHS produced classes and manually repair
errors proved infeasible. The large size and complexity of
the groups in which false positive hits occurred make it dif-
ficult to eliminate them by manual editing. If one false hit
was present, there were often other false hits between pro-
teins closely related to those in theinitia false hit. Evenif a
false positive hit can be identified and eliminated, there is
no guarantee that all of the false hits have been removed.

In HHS/MST classifications, false hits can easily be
identified by searching the path which connected two bio-
logically unrelated proteins in an artifactually merged
group. Even for very large groups, only afew dozen edges
were typicaly found. This is illustrated in Table 2 which



Table 2. False positive hit identification in alarge group by link tracing

Segment span Protein
(133 to 341) MUSNCAMR precursor polypeptide >513435 0 NCA3_MOUSE
(57 t0 543) RATTAGL axonal glycoprotein
(502 to 610) RATNCAM 14 neural cell adhesion molecule
(1to 108) HUMNCAM neural cell adhesion molecule secreted isoform
(485 to 681) XELNCAMA cell adhesion molecule
(1to 235) HUMNCAMA N-CAM >1019770 1 A26883 Neural cell adhesion
(621 to 681) XELNCAM neural cell adhesion molecule precursor
(82to 951) HUMTITINC2 titin
(248 to 940) A40985 * Projectin - Fruit fly (Drosophila melanogaster) (fragment)
(2515 to 2738) HUMTITINCS titin
(251 to 606) RATMLCK skeletal muscle light chain kinase
(1to 368) A05120 Myosin light chain kinase, skeletal muscle
(263 to 608) RABMLCKA myosin light chain kinase >511296 0 KMLC_RA

shows the hits connecting an immunoglobulin-like neural
cell adhesion molecule (NCAM) to a protein kinase domain
The table lists a set of segments, each of which was linked
by a similarity hit to the segments above and below it in the
table. In this example, the hits, or edges, connecting an
NCAM to a kinase were traced in the cluster tree. Hitsto a
set of “titin” proteins were seen to link the NCAMs and the
kinases. Titins are large structural proteins (Labeit et al,
1992) containing severa regions of low entropy sequence,
and XNU was not successful in completely eliminating
associated false hits. By manually deleting the hit from
HUMTITINC3 to RATMLCK, the kinase domain family
was correctly dissociated from the titins and NCAMs.
Deleting the hit from XELNCAM to HUMTITINC2
removed the link from the cell adhesion molecules to the
titins. The minimal spanning tree representation guaranteed
that when a false positive hit was identified and eliminated
from the dataset, the falsely merged groups were divided. If
they were not, then a cycle would have been present in the
graph and the original class representation would not have
been aminimal spanning tree.

Finally, using HHS/MST makes it more difficult to
detect a certain kind of database artifact that we discovered
with HHS. Thisartifact arises as aresult of technical diffi-
culties in cDNA cloning: partia sequences for many pro-
teins were present in the database along with complete
seguences for the same proteins. The fragmented nature of
these sequences often was not annotated and occasionally
was unknown to the contributing author. For HHS classifi-
cations, these artifactual groups could be detected using
post-classification analysis. The manifestation of the arti-
fact was a pair of two nearly identical groups. In one group,
each protein had hits with many other proteins. This was
the correct group. In the corresponding artifactual group,
one protein (the fragment) had hits with all the other pro-
teins, but because the non-fragment proteins had longer

regions of similarity (which are in the true group), none of
these other proteins had hits of this size with anything but
the fragment. This artifact produced an easily distinguish-
able star topology in the connectivity graph of the group. In
addition, the members of an artifact group, other than the
fragment, were all members of a corresponding true family
group. Inthe HHS/MST classifications, automated recogni-
tion of these fragment artifacts has proven more difficult
because much of the redundancy information used to dis-
criminate between the true and artifactual group has been
eliminated.

One of our goalsin the use of a minimal spanning tree
representation was a significant reduction in the storage
requirements for the classification calculation. This was
achieved. While classifications of the full NRDB using the
HHS algorithm required in excess of 500 MB of RAM
memory and required the use of a supercomputer with 512
MB of main memory, classifications using the minimal
spanning tree representation could be performed in 60 MB
of RAM and can be run easily on available workstations.

Discussion

Scalability of algorithms (Schank, 1991) and the ability to
work in large and complex data sets (Almuallim and Diet-
terich, 1991) are critical issues in machine learning. One of
our expressed goals in the sequence megaclassification
project has been the application of machine learning and
pattern induction techniques to large real world problems.
The HHS algorithm was successful in attacking real world
problems on datasets of interest to the biological commu-
nity (Hunter, Harris, and States, 1992), but given the rapid
growth in biological sequence data, even the quadratic scal-
ing of memory requirements with dataset size in HHS has
proven to be a significant limitation. In addition, some
cases of real biological interest have proven to be impossi-
ble to analyze on available computing resources. In particu-



lar, although we have been able to classify the current
protein sequence databases, much larger databases of
nucleic acid sequence are also available; analysis of these
datasets using HHS would require several gigabytes of
RAM. Much of the progress in computational molecular
seguence analysis has resulted from algorithms develop-
ment. We sought and were successful in deriving an algo-
rithmic solution to the limitation of the HHS approach. The
use of the HHS/MST approach will alow nucleic acid
seguence datasets and datasets containing both protein and
protein coding nucleic acid sequences to be analyzed
jointly.

The ability to work with combined protein and nucleic
acid sequence databases is of particular importance in deal-
ing with the classification artifacts created by the presence
of fragmentary sequences in the database. It may be possi-
ble to recognize partial mMRNA sequences, but there is no
definitive way to recognize partial sequences by protein
sequence classification alone. For example, the relationship
of the src kinase domain to the kinase domain of theinsulin
receptor is entirely analogous to the relationship of a partial
protein to its full parental sequence, but the proteins in the
src/insulin receptor examples are full length sequences and
the true relationship is an example of composite protein
structure. Messenger RNAs (mRNAS) typically contain a
number of distinctive features at their 5’ end including ribo-
some binding sites and initiator codons. If these are absent,
it islikely that the mRNA is a partial sequence. By jointly
classifying protein and nucleic acid coding regions, such
partial sequences can be recognized by criteria which are
independent of the classification.

The reduced storage requirements of the HHS/MST
algorithm will also be important in keeping pace with the
rapidly expanding databases of molecular sequence.
Sequence databases have been doubling in size every two
years. While computing speed has been able to match this
rate of growth to date, the corresponding pair similarity
datasets quadruple every two years. The cost of RAM has
fallen dramatically in recent years, but it has not fallen fast
enough to accommodate the projected space requirements
of aquadratic scaling calculation.

Improved ability to manually review and edit groupsis
an interesting benefit of the HHS/MST representation. In a
sense, the requirement of a more compact representation
forces a higher level view of the problem. Using the mini-
mal spanning tree representation made it easier to find false
positive hits and to manually edit and correct classifica-
tions.

The higher level view of the classification generated by
HHS/MST aso elucidates important relationships between
seguences within a group. As the L14/L 23 ribosomal pro-
tein example illustrated, there may be significant substruc-
ture within a group. Reducing group representation to a
minima number of strong similarity relationships high-
lights this extralevel of structure.

Calculation of consensus sequences or sequence pro-
file descriptions for groups is also facilitated by the span-

ning tree description of groups. When the full segmental
pair similarity list is used, ambiguous ordering or alignment
relationships were often generated by cycles in the similar-
ity graph describing a group. Since the tree representation
contains no cycles, these ambiguities are eliminated. Fur-
thermore, the use of the spanning trees based on the highest
scoring similarities optimizes the likelihood that the order-
ing and alignments defined for the group will be correct.

The tree representation implicit in the HHS/M ST prob-
lem maps closely to the hierarchic organization of protein
domains generated by the evolutionary process of gene
duplication and mutation (Patterson, 1988; Felsenstein,
1988; Dodlittle, 1992). The HHS/IMST algorithm does not
retain any notion of a parent-sibling relationship, and all of
the nodes in the HHS/MST tree are currently extant pro-
teins. Nevertheless, there is some similarity between the
highest scoring links selected by HHS/M ST and a true evo-
Iutionary tree. Homologs of closely related species are typi-
cally found near each other in HHS/MST trees, and the
longer branches of HHS/MST trees frequently correspond
with ancient divergence events between orthologous pro-
teins. The HHS/IMST classification agorithm may be a
valuable tool in the exploration of the relationship between
protein sequence, structure, and function.
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Abstract

Molecular sequence megaclassification is a technique for
automated protein sequence analysis and annotation. Imple-
mentation of the method has been limited by the need to
store and randomly access a database of all the sequence
pair similarities. More than 80,000 protein sequences are
now present in the public databases, and the pair similarity
data table for the full protein sequence database requires
over 1 gigabyte of storage. In this paper we present a com-
putationally efficient representation of groups based on a
graph theory approach where sequence clusters are
described by a minimal spanning tree of highest scoring
similarity pairs. This representation allows a classification
of N proteins to be stored in order(N) memory. The use of
this minimal spanning tree representation simplifies analy-
sis of groups, the description of group characteristics and
the manual correction of artifacts resulting from false hits.
The new tree representation also introduces new possibili-
ties for artifact generation in sequence classification. Meth-
ods for detecting and removing these artifacts are
discussed.

I ntroduction

Megaclassification of protein sequencesis a useful tool for
molecular sequence analysis (Hunter, Harris, and States,
1992; Harris, Hunter and States, 1992). Megaclassification
involves automatically dividing a large sequence database
into a collection of groups of related subsequences. These
classes describe the database well with few ambiguously
assigned sequence segments and clear distinctions between
sequence clusters. Each group of protein subsequences may
be associated with a particular function in the cell, and thus
the classification can be used to predict the possible func-
tion of anovel protein.

The implementation of massive classification is com-
putationally demanding. Although algorithmic speed is
important, the main practical limitation is space complex-
ity. We devel oped a massive classification algorithm, called
HHS (Hunter, Harris, States, 1992), that can be used to
classify very large sequence databases. HHS assembles
sequence groups by using a sequence-comparison tool
called BLAST (Altschul et a 1990), which generates pair-
wise similarity information for all pairs of sequencesin the
database. As the groups are assembled, the pair similarity
database must be available for random access. This pair
database requires over 500 megabytes of storage for the
current sequence collections and grows with the square of
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the number of sequences. To make massive classification a
feasible calculation, the pair information must reside in
RAM,; the five order of magnitude time penalty required to
access magnetic disks is prohibitively slow. These space
reguirements are the main impediment to work in this area,
so we sought to develop aternative algorithms for massive
classification with reduced memory requirements.

A second issue that arises in the practical use of the
HHS algorithm is its susceptibility to overaggregation due
to false positive similarity judgments. Our agorithm does
an approximate transitive closure on the similarity judg-
ments, and a single false positive is enough to merge two
unrelated groups of sequences. We take avariety of stepsin
the clustering algorithm to avoid this problem, including
the use of sequence filters that eliminate repetitive and low-
entropy sequences, such as XNU (States and Claverie,
1993) and seg (Wootton and Federhen, 1992). The use of
these filters dramatically reduces the number of high scor-
ing false positive alignments generated in the course of a
sequence database self-comparison. However, these filters
do not completely eliminate false positives. The problem is
compounded by the fact that false positives often occur in
sets. If ahigh scoring alignment is seen between two mem-
bers of biologically unrelated sequence classes, sequence
correlations within the classes often imply that many high
scoring alignments will be observed between closely
related members of the two classes. That means that
increasing the strictness of the similarity measure (e.g.,
increasing the number of similar sequences required for two
groups to be merged) does not solve the problem. Although
testing of the method on synthetic data shows that this prob-
lem occurs in fewer than 1% of groups (Hunter, Harris &
States, 1992), current databases produce many thousand
groups, and overaggregation does occur.

Because the number of overaggregated groups can be
expected to be relatively low (a few dozen out of thou-
sands), it is plausible to identify incorrectly merged groups
manually. However, this has proven to be a difficult task
because of the size and complexity of the individual
classes. The overaggregated groups are going to be the larg-
est ones, and these can include several thousand sequences
and millions of similarity pairs. We sought a method of rep-
resenting these large groups that would clarify the sequence
relationships within them and that would alow manual
reviewers to more readily identify and eliminate false posi-
tive hits and falsely merged sequence classes.



A third related problem is that of how to build atotal
order over the members of each group. In contrast with
many classification tasks, the classes or groups formed by
our program don't have obvious definitions. each group isa
set of protein subsequences that have been found to resem-
ble each other. The similarity relationships within groups
are often complex and are not guaranteed to be entirely self-
consistent. Each sequence in a given class resembles some
other sequence in the class; that is how they ended up
together, but this may not be sufficient to generate a com-
plete order of all the sequence segmentsin aclass. In partic-
ular, the process of hit assembly prior to clustering allows
the possihility of cyclic graph formation during the cluster-
ing phase of the HHS algorithm (Hunter, Harris, and States,
1992). If an unambiguous ordering could be generated, this
ordering could be used to align all sequences in a group
with each other, and we could fill in a consensus frequency
matrix that shows the frequency of each amino acid at each
position along the set of sequences. If desired, this could be
used to represent the class as a single consensus sequence
by taking the most common amino acid at each position.

To address these multiple issues, we have developed an
aternative classification algorithm which uses a minimal
spanning tree of similarity relationships to build sequence
classes. This approach dramatically reduces the random
access memory requirements needed to implement the clas-
sification. In addition, the minimal spanning tree provides a
more compact view of sequence relationships within a fam-
ily that is useful in identifying false hits and removing them
from the classification. Finally, it provides a method for
unambiguously ordering the sequence segments within a
group. In this paper we will describe the minimal spanning
tree classification algorithm in greater detail, we will com-
pare classifications generated by this approach with classi-
fications generated storing the full pair similarity set, we
will show how this representation can be used to facilitate
manual editing of classifications, and we will discuss clas-
sification artifacts which arise as aresult of using thisrepre-
sentation.

Protein Sequence M egaclassification

Although many protein families and functional domains are
known, many more have not yet been recognized, and there
are errors and disagreements over some of the existing defi-
nitions of families and domains. In previous work, we
reported on HHS, our agorithm for automatic clustering of
large protein sequence databases. Our algorithm was
applied to the largest collection of protein sequences that
we could assemble, totaling about 17,000,000 amino acids.
This classification resulted in the identification of more
than 10,000 groups of protein subsequences, including fam-
ilies, domains, and some artifacts.

In this section, we describe the framework we use for
classifying these databases, and introduce some of the diffi-
culties involved. Figure 1 shows a data flow representation
of the classification process.

Figure 1. Data flow in the HHS algorithm
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Binary similarity judgments are found using BLAST (Alts-
chul et al 1990) to search the molecular sequence database
against itself to generate a database of al similar sequence
segments. These are assembled into sequence similarity
pairs.

BLAST is a computationally efficient sequence simi-
larity search tool that produces alist of statistically signifi-
cant ungapped similarity segments for a pair of sequences,
called the query and the subject (Altschul et al 1990). We
used BLAST to search the molecular sequence database
againgt itself to generate alist of all similar sequence seg-
ments. Biologically occurring insertion and deletion muta-
tions may break a single region of similarity into severa
segments, each of which appears as a separate BLAST hit.
The HHS algorithm compensates for this hit fragmentation
by assembling together hits that belong to the same region
of similarity. Overall, the database search phase of the cal-
culation requires order(N%quencez) time, but the database of
similarities can be stored and updated incrementally.

Clustering Assembled Hits

After the assembly phase, the BLAST hits have been
reduced to a somewhat smaller number of assembled hits.
We now want to group these assembled hits into equiva-
lence classes, forming the transitive closure of the pairwise
similarity judgments. Hits that should be grouped together
may have “ragged ends,” and be of somewhat different
lengths.

Hits belong in the same group if they refer to the same
region of similarity. In order to be grouped together, two
hits should demonstrate significant overlap, but they need
not coincide exactly. The non-overlapping portions of the
hits are referred to as overhang.
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larity into an existing group. In large groups, much of this
similarity data is redundant; since all of the segmentsin a
group are, by definition, related to each other, the ways in
which they are related are also similar. The number of simi-
larity judgements that must be saved is proportional to the
square of the number of group members. Figure 3. shows
that for large groups, the pair similarity dataset can be very
large.

Figure3.

BLAST hits establish equality relations across pro-
teins; the query and subject portions of a hit are nonran-
domly similar. Constructing groups is a matter of building
the transitive closure of the similarity judgments provided
by BLAST. The ragged ends issue complicates the determi-
nation of whether two regions (within a protein) are in fact
the same, and, therefore, whether hits that include those two
regions should be placed in the same group. Building
equivalence classes is then a matter of determining when
two hits contain references to the same region. However,
there are several complications that make building the tran-
sitive closure difficult. BLAST searching is probabilistic
and therefore noisy. It can miss regions of similarity, and it
can fragment a single region of similarity into multiple hits.
Also, BLAST handles approximate matches in the content
of the sequences, but it requires exact registration for
matching, and its matches have fixed extent. We need to
build groups that have approximately matching extents, and
where the registration between regions of similarity is not
perfect.

HHS address these issues by storing all of the similar-
ity judgments about a sequence segment throughout the
clustering calculation. Each new similarity judgement is
tested against all of the previously saved similarities to see
if any of them are consistent with clustering this new simi-

Figure 4. Cumulative number of membersand similarity pair
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Figure 3. shows the distribution of the number of mem-
bers per group in classification of the NCBI non-redundant
sequence database (NRDB). The X-axis is on alogarithmic
scale. The vast majority of groups contain only afew mem-
bers, while a small number of groups have many members;
the largest group contains over 2 million hits.

A small number of very large clusters account for most
of the memory required to run the HHS algorithm. As Fig-
ure 4. demonstrates, these large groups are inefficient in
terms of storage required per sequence.

The figure shows that a few large groups include the
vast majority of similarity relationships, and the number of
similarity values in these groups is out of proportion to the
number of membersthey contain. This observation led usto
modify our clustering method to reduce this redundancy.
The modification also has salutary effects on the memory
reguired to cluster and the human comprehensibility of the

100000

members
80000

60000

40000

20000

cumulative number of hits

0

0 2000 4000 6000 8000 1000012000
group index

6+*10°
5100
4100
3¢10°
24100
106 J
0
0 2000 4000 6000 8000 1000012000
group index

similarity pairs

cumulative number of hits




results, and provides a mechanism to impose a total order
on the members of each group.

Computationally Efficient Class Representation: The
HHS/M ST Algorithm

It occurred to us that most of the similarity data saved for
large groups was redundant, and it was clear that the stor-
age of this excess data was limiting our ability to classify
increasingly larger sequence databases. Recall that HHS
works by approximate transitive closure: If a to-be-classi-
fied sequence is similar to a single member of a group, itis
added to that group; if it is similar to members of more than
one group, those groups are combined. HHS keeps track of
all the similarity relationships between sequence in a group
(by definition, there are no similarity relationships outside a
group). The hope was that we could reduce this storage
requirement by keeping only a subset of the similarity rela-
tionships within group, rather than all of them. The most
aggressive way to do thisisto keep only one similarity rela-
tionship for each member of a group.

If we take this aggressive approach, we can throw
away all but one of the similarity relationships between that
seguence and the other members of its group. Which simi-
larity relationship should be kept? The highest scoring sim-
ilarity pair for a sequence is an obvious candidate as the
relationship to store. There are several reasons for choosing
this pair. The sequence pair with the highest similarity
score is likely to have diverged least evolutionarily. Since
the information content of a sequence alignment declines
with evolutionary divergence (Dayhoff et al, 1978; Alts-
chul, 1990), the highest scoring pair is the most informa-
tive. Since the information content of the alignment is
greatest, the highest scoring pair is likely to give the most
accurate estimate for the endpoints of the aligned segments.
The highest scoring pair is the similarity pair least likely to
miss a region of similarity distal to an insertion or deletion
mutation. The number of insertion and deletion mutations
in an alignment correlates with the number of substitution
mutations; high scoring pairs are likely to have fewer of
each. If an insertion or deletion event has occurred in a
closely related sequence pair, the distal segments are most
likely to be recognizable for the most similar sequence pair.

To recognize a sequence segment as a member of a
particular group, the segment must demonstrate similarity
to a single member of the group. HHS stores al of the
sequence similarity relationships within every class, and
thus additional similarity relationships may modify the end-
points of the segment that is assigned to the sequence class.
In some cases a hew similarity relationship may be consis-
tent with some, but not all, of the similarity hitsalready in a
group. Testing a new hit against only a subset of the simi-
larity data might, therefore, alter the group to which a seg-
ment is assigned, but in practice such cases are rare. To test
how limiting the amount of similarity data stored might
affect classifications, we implemented a classification in
which only a single similarity relationship was retained for
each new sequence segment.

The memory requirements and computational com-
plexity of the classification algorithm can be analyzed by
graph theory. Sequence segments may be considered to be
nodes, and similarity relationships may be viewed as edges
with the length of an edge being inversely proportional to
the similarity score. A sequence class is then a connected
graph. Representing the class by storing only the single
highest scoring similarity relationship for each new
sequence is equivalent to replacing the class relationship
graph with a minimal spanning tree. This analogy is valid
as long as the reduction to minimal spanning tree represen-
tation does not alter the segment endpoints for the sequence
segments which are the nodes of the class. In practice, we
have found that this condition is usually met. We refer to
this algorithm as the minimal spanning tree variant of the
HHS agorithm or HHS/MST.

The computational complexity of sequence classifica-
tion is equivalent to the computational complexity of defin-
ing the minimal spanning trees in the forest of graphs
defined by the full set of edges. Thisis awell known prob-
lem which has been analyzed in detail. The forest of mini-
mal spanning trees can be generated by sorting the edges by
length (computational complexity order(Negge 109(Nedge)),
taking them in order and rejecting any edge which gener-
ates a cyclic graph. By marking the nodes of each tree, the
graph can be tested by cyclesin constant time for each addi-
tional edge. A new edge will be incorporated into the forest
at most once for each node. A new edge may merge two
previous trees, and remarking the nodes of the tree will
require time proportional to the number of members in
either of the two merged groups.

The storage requirements of the minimal spanning tree
algorithm are proportional to the number of nodes in the
forest. This contrasts with the HHS algorithm, in which the
full set of edgesis stored. Since the number of edgesis pro-
portional to the number of nodes squared, the use of amini-
mal spanning tree representation results in a dramatic
reduction in storage requirements.

Testingthe HHS/M ST Algorithm

There is a possible problem with this approach. Recall that
the extent of similar regions is used to determine whether a
new sequence belongs in an existing group. Suppose a
group contains aregion of sequence A. Suppose further that
sequence B has a region that is similar to part of sequence
A. Whether sequence B will be added to the group depends
on the extent of the overlap (and non-overlap) with A. If we
keep only one similarity pair for A, then the extent of A in
the group is the one associated with that similarity. If there
is a wide range of extents of similarities for sequence A,
and sequence B is at a different end of that distribution than
the hit that was saved for A, then it is possible that using the
HHS/MST method will cause B to fail to be added to the
group. This could also cause a pair of groups to fail to be
merged together.

We have reason to believe that thisis not likely to be
practically significant. The highest similarity score gener-



Figure5. Fully connected and minimal spanning tree representations of a group
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ally goes to the longest pair of sequences, so al of the
extents will tend to be at the long end of the distribution.
We also ran the two methods on the same dataset to com-
pare the differences in classification.

Table 1.
Category HHS HHSMST
families 139 140
mixed 11 10
domains 11 14
Total 161 164

Table 1. compares the results of classifications gener-
ated using the HHS and HHS/MST agorithms to classify
the sequencesin the Brookhaven Protein Data Bank (PDB).
For the vast majority of the classes, the members included
and the precise endpoints of the domains were exactly the
same in the two classifications. There were two exceptions
to this. One group that contained both whole protein hits
and subprotein hits in the HHS classification was atered in
the HHS/MST classification so that the domain hit was
eliminated from the group, and this group therefore became
a protein family class instead of a mixed domain/family
class. In addition, three domain groups were defined in the
HHS/MST classification that were not defined in the HHS
classification. These additional subgroups resulted from
cases where assembled alignments between distantly
related members of a group spanned less than the full extent
of the domain and were short enough that the endpoint
length cutoff used in the classification did not allow these
hits to be included in the domain. In these three cases, new
groups were created which represent these conserved cores
of sequence. These new groups are not simply artifacts of
the HHS/MST algorithm because they provide additional
information about regional sequence conservation within
the parent domains. In this sense, the HHS/M ST classifica

tion may actually be more informative than the full HHS
classification.

The use of aminimal spanning tree representation pro-
vides a useful tool for generating subgroup descriptions.
This is illustrated in Figure 5. This family contains both
L14 and L23 ribosomal proteins. Viewing all of the similar-
ity relationships within the group, it is difficult to distin-
guish between these two subgroups. When only the hits
making up the minimal spanning tree are shown, the tightly
clustered L23 subgroup is more apparent. In addition, the
phylogenetic relationships of the L14 members are also
more easily discerned.

The ability to generate subgroupsis also useful in mak-
ing functional and biological correlates. For example, the
tyrosine kinase domains which are found in transmembrane
receptors such as the insulin and epidermal growth factor
receptors form a distinct subtree in the kinase class. Simi-
larly, the trypsin and elastase subtrees of the serine pro-
teases correlate with substrate preferences.

Using the M ST for manual review of the classification

As described above, even when sequences are prefiltered to
remove low entropy regions, false positive similarities can
generate some overaggregated groups. Trying to manually
screen the HHS produced classes and manually repair
errors proved infeasible. The large size and complexity of
the groups in which false positive hits occurred make it dif-
ficult to eliminate them by manual editing. If one false hit
was present, there were often other false hits between pro-
teins closely related to those in theinitia false hit. Evenif a
false positive hit can be identified and eliminated, there is
no guarantee that all of the false hits have been removed.

In HHS/MST classifications, false hits can easily be
identified by searching the path which connected two bio-
logically unrelated proteins in an artifactually merged
group. Even for very large groups, only afew dozen edges
were typicaly found. This is illustrated in Table 2 which



Table 2. False positive hit identification in alarge group by link tracing

Segment span Protein
(133 to 341) MUSNCAMR precursor polypeptide >513435 0 NCA3_MOUSE
(57 t0 543) RATTAGL axonal glycoprotein
(502 to 610) RATNCAM 14 neural cell adhesion molecule
(1to 108) HUMNCAM neural cell adhesion molecule secreted isoform
(485 to 681) XELNCAMA cell adhesion molecule
(1to 235) HUMNCAMA N-CAM >1019770 1 A26883 Neural cell adhesion
(621 to 681) XELNCAM neural cell adhesion molecule precursor
(82to 951) HUMTITINC2 titin
(248 to 940) A40985 * Projectin - Fruit fly (Drosophila melanogaster) (fragment)
(2515 to 2738) HUMTITINCS titin
(251 to 606) RATMLCK skeletal muscle light chain kinase
(1to 368) A05120 Myosin light chain kinase, skeletal muscle
(263 to 608) RABMLCKA myosin light chain kinase >511296 0 KMLC_RA

shows the hits connecting an immunoglobulin-like neural
cell adhesion molecule (NCAM) to a protein kinase domain
The table lists a set of segments, each of which was linked
by a similarity hit to the segments above and below it in the
table. In this example, the hits, or edges, connecting an
NCAM to a kinase were traced in the cluster tree. Hitsto a
set of “titin” proteins were seen to link the NCAMs and the
kinases. Titins are large structural proteins (Labeit et al,
1992) containing severa regions of low entropy sequence,
and XNU was not successful in completely eliminating
associated false hits. By manually deleting the hit from
HUMTITINC3 to RATMLCK, the kinase domain family
was correctly dissociated from the titins and NCAMs.
Deleting the hit from XELNCAM to HUMTITINC2
removed the link from the cell adhesion molecules to the
titins. The minimal spanning tree representation guaranteed
that when a false positive hit was identified and eliminated
from the dataset, the falsely merged groups were divided. If
they were not, then a cycle would have been present in the
graph and the original class representation would not have
been aminimal spanning tree.

Finally, using HHS/MST makes it more difficult to
detect a certain kind of database artifact that we discovered
with HHS. Thisartifact arises as aresult of technical diffi-
culties in cDNA cloning: partia sequences for many pro-
teins were present in the database along with complete
seguences for the same proteins. The fragmented nature of
these sequences often was not annotated and occasionally
was unknown to the contributing author. For HHS classifi-
cations, these artifactual groups could be detected using
post-classification analysis. The manifestation of the arti-
fact was a pair of two nearly identical groups. In one group,
each protein had hits with many other proteins. This was
the correct group. In the corresponding artifactual group,
one protein (the fragment) had hits with all the other pro-
teins, but because the non-fragment proteins had longer

regions of similarity (which are in the true group), none of
these other proteins had hits of this size with anything but
the fragment. This artifact produced an easily distinguish-
able star topology in the connectivity graph of the group. In
addition, the members of an artifact group, other than the
fragment, were all members of a corresponding true family
group. Inthe HHS/MST classifications, automated recogni-
tion of these fragment artifacts has proven more difficult
because much of the redundancy information used to dis-
criminate between the true and artifactual group has been
eliminated.

One of our goalsin the use of a minimal spanning tree
representation was a significant reduction in the storage
requirements for the classification calculation. This was
achieved. While classifications of the full NRDB using the
HHS algorithm required in excess of 500 MB of RAM
memory and required the use of a supercomputer with 512
MB of main memory, classifications using the minimal
spanning tree representation could be performed in 60 MB
of RAM and can be run easily on available workstations.

Discussion

Scalability of algorithms (Schank, 1991) and the ability to
work in large and complex data sets (Almuallim and Diet-
terich, 1991) are critical issues in machine learning. One of
our expressed goals in the sequence megaclassification
project has been the application of machine learning and
pattern induction techniques to large real world problems.
The HHS algorithm was successful in attacking real world
problems on datasets of interest to the biological commu-
nity (Hunter, Harris, and States, 1992), but given the rapid
growth in biological sequence data, even the quadratic scal-
ing of memory requirements with dataset size in HHS has
proven to be a significant limitation. In addition, some
cases of real biological interest have proven to be impossi-
ble to analyze on available computing resources. In particu-



lar, although we have been able to classify the current
protein sequence databases, much larger databases of
nucleic acid sequence are also available; analysis of these
datasets using HHS would require several gigabytes of
RAM. Much of the progress in computational molecular
seguence analysis has resulted from algorithms develop-
ment. We sought and were successful in deriving an algo-
rithmic solution to the limitation of the HHS approach. The
use of the HHS/MST approach will alow nucleic acid
seguence datasets and datasets containing both protein and
protein coding nucleic acid sequences to be analyzed
jointly.

The ability to work with combined protein and nucleic
acid sequence databases is of particular importance in deal-
ing with the classification artifacts created by the presence
of fragmentary sequences in the database. It may be possi-
ble to recognize partial mMRNA sequences, but there is no
definitive way to recognize partial sequences by protein
sequence classification alone. For example, the relationship
of the src kinase domain to the kinase domain of theinsulin
receptor is entirely analogous to the relationship of a partial
protein to its full parental sequence, but the proteins in the
src/insulin receptor examples are full length sequences and
the true relationship is an example of composite protein
structure. Messenger RNAs (mRNAS) typically contain a
number of distinctive features at their 5’ end including ribo-
some binding sites and initiator codons. If these are absent,
it islikely that the mRNA is a partial sequence. By jointly
classifying protein and nucleic acid coding regions, such
partial sequences can be recognized by criteria which are
independent of the classification.

The reduced storage requirements of the HHS/MST
algorithm will also be important in keeping pace with the
rapidly expanding databases of molecular sequence.
Sequence databases have been doubling in size every two
years. While computing speed has been able to match this
rate of growth to date, the corresponding pair similarity
datasets quadruple every two years. The cost of RAM has
fallen dramatically in recent years, but it has not fallen fast
enough to accommodate the projected space requirements
of aquadratic scaling calculation.

Improved ability to manually review and edit groupsis
an interesting benefit of the HHS/MST representation. In a
sense, the requirement of a more compact representation
forces a higher level view of the problem. Using the mini-
mal spanning tree representation made it easier to find false
positive hits and to manually edit and correct classifica-
tions.

The higher level view of the classification generated by
HHS/MST aso elucidates important relationships between
seguences within a group. As the L14/L 23 ribosomal pro-
tein example illustrated, there may be significant substruc-
ture within a group. Reducing group representation to a
minima number of strong similarity relationships high-
lights this extralevel of structure.

Calculation of consensus sequences or sequence pro-
file descriptions for groups is also facilitated by the span-

ning tree description of groups. When the full segmental
pair similarity list is used, ambiguous ordering or alignment
relationships were often generated by cycles in the similar-
ity graph describing a group. Since the tree representation
contains no cycles, these ambiguities are eliminated. Fur-
thermore, the use of the spanning trees based on the highest
scoring similarities optimizes the likelihood that the order-
ing and alignments defined for the group will be correct.

The tree representation implicit in the HHS/M ST prob-
lem maps closely to the hierarchic organization of protein
domains generated by the evolutionary process of gene
duplication and mutation (Patterson, 1988; Felsenstein,
1988; Dodlittle, 1992). The HHS/IMST algorithm does not
retain any notion of a parent-sibling relationship, and all of
the nodes in the HHS/MST tree are currently extant pro-
teins. Nevertheless, there is some similarity between the
highest scoring links selected by HHS/M ST and a true evo-
Iutionary tree. Homologs of closely related species are typi-
cally found near each other in HHS/MST trees, and the
longer branches of HHS/MST trees frequently correspond
with ancient divergence events between orthologous pro-
teins. The HHS/IMST classification agorithm may be a
valuable tool in the exploration of the relationship between
protein sequence, structure, and function.
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